NIL

LEARNING

)i
Cisco

Learning
Specialized
Partner

Enhance the 10S User Interface

By Ivan Pepelnjak

1. 5. 2007

Have you ever wanted to fine-tune the IOS show commands to provide you
with the exact information you need instead of having to dig through long
screens full of data you’re not interested in to find what you need? In this
article, you’ll see how you can use the simple filters provided by Cisco 10S
to pick only the information you need from the printouts, as well as how
you can generate tailored printouts (even combining outputs from multiple

show commands) with Tcl shell introduced in 1OS release 12.3(2)T.

Introduction to Output Filters

The output filters of the show command were introduced in 10S release
12.0T. They give you the ability to filter the output of any show command
supported by Cisco IOS by appending the pipe symbol (|) and a filter at the

end of the show command. You can:

e Include or exclude the lines matching the specified regular
expression with the include and exclude filter;
e Start the printout at the line matching a regular expression with the

begin filter;

NIUL

LEARNING

Enhance the I0S User Interface

e Output only the matching sections of the printout with the section
filter.

Note: A section starts with a line with no leading blank and includes all lines
following it until the start of the next section. The section filter is commonly
used to filter router configuration printouts, but can also be used for any

other show command.

Similar filters (only include, exclude and begin) are provided by the more
command. Other EXEC level commands do not support output filters, as
they are not a generic extension of the command line interface (like pipes
in Unix or Windows operating systems), but a special keyword in the show
and more commands. That’s also the reason you cannot cascade two (or

more) filters like you can on Unix.

Note: The flexibility of the output filters relies heavily on the regular
expressions. While you can use simple strings to filter the printouts (as we’ll
do in the next section), you’ll achieve much more if you’ll master the full
scope of the regular expressions. You can get more information about
regular expressions in the Appendix A of the Terminal Services

Configuration Guide part of Cisco /OS documentation.

Simple Filters

To give you an idea what you can achieve with the output filters, consider a
common Frame Relay-related problem: you would like to see which Frame
Relay virtual circuits (DLCIs) are active. The only IOS command displaying
DLCI status is the show frame-relay pvc command, which gives you way

too much information (only a single DLCI is included in Listing 1)

Listing 1: Output of the show frame-relay pvc command
al#show frame-relay pvc

PVC Statistics for interface Serial0/0/0 (Frame Relay DTE)

Active Inactive Deleted Static
Local 1 0 0 0
Switched 0 0 0 0
Unused 3 0 0 0

©2014 All rights reserved. Security tag: PROTECTED 2

NIUL

LEARNING

Enhance the I0S User Interface

DLCI = 100, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/0
.100

input pkts 514 output pkts 410 in bytes 50186
out bytes 43749 dropped pkts 0 in pkts dropped 0
out pkts dropped 0 out bytes dropped 0

in FECN pkts 0 in BECN pkts O out FECN pkts 0
out BECN pkts 0 in DE pkts O out DE pkts O

out bcast pkts 334 out bcast bytes 39257

5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
pvc create time 00:44:30, last time pvc status changed 00:44:11
. remaining printout deleted ..
If you use the output filter, displaying only those lines in the show frame-

relay pvc printout that include the string DLC/ USAGE, you'll get exactly
what you need: a short printout of the DLCI status (Listing 2).

Listing 2: Short printout displaying just the DLCI status

al#show frame pvc | include DLCI USAGE

DLCI = 100, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/0
.100

DLCI = 200, DLCI USAGE = UNUSED, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/
0
DLCI = 301, DLCI USAGE = UNUSED, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/
0
DLCI = 401, DLCI USAGE = UNUSED, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/
0

If you'd like to include the WAN interface name in the printout (although
it’s specified in the DLCI status line), you have to modify the output filter a
bit: it also has to include the lines with the string for interface. The or

regular expression (pipe operator) provides that functionality (Listing 3).

Listing 3: Slightly enhanced printout of the DLCI status
al#show frame pvc | include for interface|DLCI USAGE
PVC Statistics for interface Serial0/0/0 (Frame Relay DTE)

DLCI = 100, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/0
.100

©2014 All rights reserved. Security tag: PROTECTED 3

Enhance the I0S User Interface

DLCI 200, DLCI USAGE UNUSED, PVC STATUS ACTIVE, INTERFACE Serial0/0/

DLCI = 301, DLCI USAGE = UNUSED, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/

DLCI = 401, DLCI USAGE
0

UNUSED, PVC STATUS

ACTIVE, INTERFACE = Serial0/0/

To make your enhancement to the 10S user interface really user-friendly,
you can define an alias for it. For example, if you define a new command
dici as alias exec dlci show frame pvc | include for interface|DLCI
USAGE, the DLCI status will be displayed every time the 10S user enters
the dlci command. You can even use the new command through the I0S
web interface: to display the DLCI status in your browser, use the
http://router-name/level/1/exec/dlci/CR URL.

Note: The CR at the end of the URL indicates the end of the command line
(as the router cannot determine whether you want to extend the regular

expression that terminates the alias definition or not).

Displaying Router Configuration

The output filters are probably most useful when you’re trying to find
relevant parts of 10S configuration (more so when you’re under stress in a
network down situation and need to find something quickly on a high-end
router with thousands of lines in its configuration). Here’s also where the
section filter is most useful. For example, to display all routing processes

configured on a router, use the command in Listing 4.

Listing 4: Display all routing processes on a router
al#show running-config | section “router

router ospf 1

log-adjacency-changes

network 0.0.0.0 255.255.255.255 area 0

router bgp 1

no synchronization

bgp log-neighbor-changes

network 172.16.0.1 mask 255.255.255.255

N I L ©2014 All rights reserved. Security tag: PROTECTED 4
LEARNING

NIUL

LEARNING

Enhance the I0S User Interface

neighbor 172.16.0.12 remote-as 1

neighbor 172.16.0.12 update-source LoopbackO

no auto-summary
Note: The regular expression “router matches the string router only if it
occurs at the beginning of the line (as requested by the " special character).

The section “router filter displays all sections of /IOS configuration that

start with the word router, that is all routing processes.

Similarly, to display all access lists configured on a router, you can use a
begin filter as shown in Listing 5. The regular expression specified in the
begin filter matches either access-list or ip access-list strings occurring at
the beginning of the line (to ensure that an access-list keyword in some
other |IOS command would not trigger the printout). While you could use
the “ip access-list|"access-list regular expression in the filter, the one used
in the example is more concise and easier to understand once you master

the subtleties of the regular expressions.

Note: The begin filter displays all the routing configuration after the start of
the access list definitions, not just the access lists, but I've decided to use it
in this case to preserve the separations (exclamation marks) between the

access lists.
Listing 5: Display configured access lists
al#show running-config | begin * (ip) ?access-list

ip access-list extended Test

permit ip any any

ip access-list logging interval 1000
access-list 10 permit 192.168.0.10
access-list 200 permit 0x0801 0x0000
|

. rest of printout deleted ..

Note: To enter question mark (?) in a configuration command, use the Ctrl-

V,? sequence.

©2014 All rights reserved. Security tag: PROTECTED 5

NIUL

LEARNING

Enhance the I0S User Interface

The next example illustrates why it’s important to include the beginning-of-
line checks in the regular expressions: if you define an alias for your filter, it

might appear in the configuration output (Listing 6).

Listing 6: Command alias appearing in the configuration output

a2#show running-config | section event manager

alias exec events show running-config | section event manager

event manager applet after-restart

event syslog occurs 1 pattern "%SYS-5-RESTART: System restarted"

action 2.0 cli command "enable"

action 2.1 cli command "configure terminal"

action 2.2 cli command "interface loopback 101"

action 2.3 cli command "no shutdown"

| would like to finish this section with a warning: before executing a show
running-config command and filtering its output, you should check
whether the filtered output is provided by the show running-config
command. For example, in 10S release 12.4, you can display configuration
of a single interface or all configured class-maps and policy-maps without
generating the full router configuration, resulting in a significantly faster

operation (more so on high-end devices with large configurations).

OSPF Example

The area where | use output filters most often is the routing protocol
displays. For example, the show ip ospf neighbor command does not
display the neighbors’ areas, those can only be displayed with the show ip
ospf neighbor detail command, which is way too verbose to be useful
when you need a concise printout (the information displayed about a single
OSPF neighbor is included in Listing 7).

Listing 7: Detailed printout of the OSPF neighbor data

al#show ip ospf neighbor detail
Neighbor 172.16.0.21, interface address 172.16.1.2
In the area 0 via interface Serial0/0/0.100

Neighbor priority is 0, State is FULL, 6 state changes

©2014 All rights reserved. Security tag: PROTECTED 6

Enhance the I0S User Interface

DR is 0.0.0.0 BDR is 0.0.0.0

Options is 0x52

LLS Options is 0x1 (LR)

Dead timer due in 00:00:37

Neighbor is up for 00:39:02

Index 1/1, retransmission queue length 0, number of retransmission 1
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan length is 1, maximum is 1

Last retransmission scan time is 0 msec, maximum is 0 msec

. rest deleted ..

All the information I'm usually interested in (neighbor IP addresses,
interface, adjacency state and area — highlighted in Listing 7) are displayed
in lines that contain the string Neighbor (regular expressions are case-
sensitive!) or area, so you can get close to what | would like to see with a

simple filter matching these two words (Listing 8).

Listing 8: Concise OSPF neighbor printout

al#show ip ospf neighbor detail | include Neighbor|area
Neighbor 172.16.0.21, interface address 172.16.1.2
In the area 0 via interface Serial0/0/0.100
Neighbor priority is 0, State is FULL, 6 state changes
Neighbor is up for 00:40:07
Neighbor 172.16.0.12, interface address 10.0.0.6
In the area 0 via interface FastEthernet0/0
Neighbor priority is 1, State is FULL, 6 state changes

Neighbor is up for 00:40:18

Getting rid of the neighbor uptime is harder. It would be ideal if we could
just pipe the filtered output into another filter and exclude all lines with the
string Neighbor is, but we cannot do it, as we only get one filter per

command. Our include filter thus has to select:

e Lines that contain the string Neighbor and the string priority;
e Lines that contain string Neighbor and interface;

e Lines that contain the string area.

N I L ©2014 All rights reserved. Security tag: PROTECTED 7
LEARNING

NIUL

LEARNING

Enhance the I0S User Interface

The first two requirements can be specified with the regular expression
StringA.*StringB (meaning, literally, match StringA, then anything repeated
as many times as needed, then StringB), resulting in a long output filter
include Neighbor.*interface|Neighbor.*prioritylarea. If you want to make
it shorter, you can group strings in a hierarchical structure, resulting in the

filter displayed in Listing 9.

Listing 9: Perfect filter displaying only the relevant details about OSPF

neighbors

al#show ip ospf neighbor detail | include (Neighbor.* (interface|priority)) |a

rea
Neighbor 172.16.0.21, interface address 172.16.1.2

In the area 0 via interface Serial0/0/0.100

Neighbor priority is 0, State is FULL, 6 state changes
Neighbor 172.16.0.12, interface address 10.0.0.6

In the area 0 via interface FastEthernet0/0

Neighbor priority is 1, State is FULL, 6 state changes

EIGRP Example

If you've deployed EIGRP stub neighbors in your network, you’ll probably
want to know which neighbors of a core EIGRP router are stub when doing
the network troubleshooting. The show ip eigrp neighbors command does
not give you that information, you have to use the show ip eigrp
neighbors detail command (Listing 10), which is slightly too verbose
(although extremely terse when compared to the equivalent OSPF
command). Ideally, we would like to see only the highlighted lines from
Listing 10 in the printout and include the EIGRP process information and

the printout headers.

Listing 10: Detailed information about an EIGRP neighbor
a2#show ip eigrp neighbors detail

IP-EIGRP neighbors for process 1

H Address Interface Hold Uptime SRTT RTO Q Seqg

(sec) (ms) Cnt Num

1 172.16.1.6 Se0/0/0.101 12 00:00:12 36 216 0 9

©2014 All rights reserved. Security tag: PROTECTED 8

NIUL

LEARNING

Enhance the I0S User Interface

Version 12.4/1.2, Retrans: 1, Retries: 0, Prefixes: 2
Stub Peer Advertising (CONNECTED) Routes

Suppressing queries

The filtered printout should thus include:

¢ The EIGRP process information: any line containing the process
string.

e Printout headers: lines containing /nterface or (sec) strings.

e Neighbor addresses and interfaces: lines starting with a digit.

e Stub neighbor information: lines containing the Stub string.

The only regular expression we haven’t encountered yet is the /ines starting
with a digit requirement. While you could code it as ~0O|*1|*2..., it’'s simpler
to write it as "[0-9] (meaning: beginning of the line and then any character
from O to 9). The final filter is thus include "[O-
9]|process|Iinterface|(sec)|Stub (Listing 11).

Listing 11: Filtered printout of EIGRP neighbors

a2f#show ip eigrp neighbors detail | include " [0-

9] |process|Interface]| (sec) |Stub

IP-EIGRP neighbors for process 1

H Address Interface Hold Uptime SRTT RTO Q Seqg
(sec) (ms) Cnt Num
1 172.16.1.6 Se0/0/0.101 14 00:02:01 36 216 0 9

Stub Peer Advertising (CONNECTED) Routes

0 10.0.0.5 Fa0/0 12 00:03:33 27 200 0 11

Using the Tcl Shell

The output filters attached to the show commands can fine-tune the
information displayed to the operator, but can never rearrange it or output
it in a tabular format. All that is possible with Tcl, a general-purpose
language that became available in the command-line interface with the
introduction of Tcl shell in 10S release 12.3(2)T, now integrated in release
12.4 (Tcl was previously used in Cisco |IOS only to filter syslog messages

and in voice scripts).

©2014 All rights reserved. Security tag: PROTECTED 9

Enhance the I0S User Interface

The ability to generate user-defined printout in Cisco IOS relies on these

|OS features:

e The tclsh command accepts a file name as its parameter, executing
Tcl commands in that file. The file can be local (stored in on-board
flash, USB flash or even NVRAM).

e You can use the exec function in Tcl to execute any EXEC mode 10S
command and collect its printouts.

¢ You can configure an alias to give the Tcl procedure executed with

the Tcl shell a simple command name.

For example, it would be nice to have the DLCI printout shown in the
Simple filters section in a tabular format. An initial solution is shown in
Listing 12. When you copy the Tcl code into d/citc/ and save the file on
router’s flash memory, you can configure alias exec dlci tclsh flash:dici.tcl
to have it available as a simple exec-level command (the results are in
Listing 13).

Listing 12: Simple Tcl procedure to display DLCI status in tabular format

set lineFormat "%4s %$-10s %-10s %s"

puts [format $lineFormat "DLCI"™ "Status" "Usage" "Interface"]

puts "
set text [exec "show frame-relay pvc"]
foreach line [split $text "\n"] {

if {[regexp {DLCI = ([0-
9.]+) .*USAGE = (\w+).*STATUS = (\w+).*INTERFACE = (.*)}

$line ignore dlci usage status ifnamel]} {

puts [format $lineFormat $dlci $status Susage $ifname]

}

Listing 13: Sample DLCI printout

al#dlci
DLCI Status Usage Interface
100 ACTIVE LOCAL Serial0/0/0.100
200 ACTIVE SWITCHED Serial0/0/0
N I L ©2014 All rights reserved. Security tag: PROTECTED 10

LEARNING

NIUL

LEARNING

Enhance the I0S User Interface

301 ACTIVE SWITCHED Serial0/0/0

401 ACTIVE UNUSED Serial0/0/0

The Tcl procedure is quite simple (ignoring the obscure format that’s even

harder to understand for uninitiated than Perl or Lisp):

e The first line defines the output format (similar to C sprintf function).

e The next two lines print the legend (the format function is equivalent
to sprintf in C and the puts function displays a line of text).

e The fourth line executes the show command and stores its results in
variable text.

e The foreach loop iterates over each output line produced from the
results of the show command with the spl/it function, which breaks
the text into individual lines.

e Each line is matched with a regular expression that also collects bits
of text (the parts of regular expression enclosed in parentheses) and
stores them in specified variables (one of the more confusing
aspects of Tcl is that you have to write variables with or without the
$ sign depending on the context).

e |f the line matches the regular expression, the variables specified in
the regexp function already contain the matched values, so they can
be used immediately in the format function to generate a line of the

printout.

If you find the procedure in Listing 12 way too confusing, don’t worry — it’s
important that you know what can be done in Cisco IOS and how you can
integrate Tcl procedures with the rest of the 10S, and everything else can

be done by a decent Tcl programmer.

Similarly to the command aliases defined in previous sections, the Tcl
procedures can be invoked via a web browser. The procedure defined in
this section is executed with the URL http://router-name/level/1/exec/dIci

(assuming the dlci alias has been configured).

Summary

All Cisco 10S show commands support output filters that can include or

exclude lines matching a specified regular expression from the generated

©2014 All rights reserved. Security tag: PROTECTED 1

NIUL

LEARNING

Enhance the I0S User Interface

printout. A section filter also allows you to include or exclude whole
sections of the output (a section is an output line without a leading blank
and all subsequent lines having at least one leading blank). These output
filters allow you to quickly get the information you need from IOS printouts
that might be too verbose for you. With the alias configuration command,
you can go a step further, defining new IOS commands that display only

the information you’re interested in.

The output filters only allow you to tailor the amount of information
generated by the show commands; they cannot reorder data or display it
in tabular format. All that is possible to implement with Tcl, a generic-
purpose programming language included in Cisco I0S. You can execute
any 10S command (or a set of commands) in Tcl, collect the output, extract
the desired information and reformat it. The Tcl procedures can also be
defined as aliases, giving network operators new commands that can be
tailored to their environment or the tasks they have to perform. Even more,
the same commands can be executed from a web browser, displaying the
desired information without requiring the network operator to start a telnet

session with the device.

NIL — More Than Just a Training Company

NIL Learning delivers the leading-edge Cisco training to |IT
professionals and companies around the globe. Through field-proven
experts — each both active engineer and instructor — NIL Learning
enhances the standard learning curriculum with real-life experience and

helps clients to maximize their training investment.

NIL Learning is part of NIL, a leading global IT solutions provider. Since
1992, NIL has been at the forefront of advanced contributors to strategic
partner Cisco’s technologies, learning curriculum and value-added solutions
deployed to clients around the globe. Today, NIL has earned the highest
certifications offered by Cisco, VMware, EMC, HP, IBM, Microsoft, F5, Jive,

©2014 All rights reserved. Security tag: PROTECTED 12

Enhance the I0S User Interface

Mobilelron, RSA, VCE and others. Their portfolio of solutions consists of

managed services, professional services and learning services.

NIL is headquartered in Slovenia, with regional offices in Croatia, Serbia,
Saudi Arabia, the U.S., Turkey, South Africa, Morocco, Nigeria, Kenya and

Botswana.

Why learn at NIL LEARNING?

e All NIL LEARNING instructors are field-proven experts - each both
active engineer and instructor.

e 75% of NIL LEARNING engineers hold CCSI certifica- tions, and 18
have already achieved the respected CCIE rank.

e NIL LEARNING enhances the standard learning curriculum with
real-life experience and helps clients to maximize their training
investment.

e NIL has been a Cisco Training Partner for many years; it became a
Cisco Learning Partner in 1993, and has been a Cisco Gold Partner
since 1995.

¢ NIL was awarded the Cisco Most Business Relevant Learning
Partner in MEA in 2010 and the most innova- tive learning partner
in MEA.

e NIL received the Innovation Award for its Technology Led
Training and its extensive contribution to Cisco learning solutions
at the Cisco EMEAR Learning Partner Summit in 2012.

¢ NIL received the Innovation Award for its Technology Led
Training and Advanced Engineer Program at the Cisco Global
Learning Partner Summit in 2013.

e NIL LEARNING runs a centralized training schedule across the
whole EMEAR region.

N I L ©2014 All rights reserved. Security tag: PROTECTED 13
LEARNING

NIUL

LEARNING

Enhance the I0S User Interface

More Info

Slovenia
T: +386 14746 500

E: sales-support@nil.com

Botswana
T: +267 318 1684

E: training@it-ig.bw

Croatia
T: +385 (0)51 583 255

E: info-nilcroatia@nil.com

Kenya
T:+27 (O)N1 575 4637

E: mea_sales@nil.com

Morocco
T: +212(0) 660 808 394

E: info-nilmorocco@nil.com

©2014 All rights reserved.

Nigeria
T: +27 (O)11 575 4637

E: mea_sales@nil.com

Saudi Arabia
T: 4966 1465 4641

E: info.nilme@nil.com

Serbia
T: 438111 2282 818

E: info-nilserbia@nil.co.rs

South Africa
T: 427 (O)11 575 4637

E: mea_sales@nil.com

Turkey
T: +902 123 818639

E: info-nilturkey@nil.com

Security tag: PROTECTED 14

mailto:sales-support@nil.com
mailto:training@it-iq.bw
mailto:info-nilcroatia@nil.com
mailto:mea_sales@nil.com
mailto:info-nilmorocco@nil.com
mailto:mea_sales@nil.com
mailto:info.nilme@nil.com
mailto:info-nilserbia@nil.co.rs
mailto:mea_sales@nil.com
mailto:info-nilturkey@nil.com

Enhance the I0S User Interface

USA

T: +1 612 886 3900 www.learning.nil.com

E: info-nilusa@nil.com

N I L ©2014 All rights reserved. Security tag: PROTECTED 15
LEARNING

mailto:info-nilusa@nil.com
http://www.learning.nil.com/

